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1. INTRODUCTION

Let Z be the set of all polynomials and let &, be the subset of # whose

elements have degree not exceeding 7.
By O(x) we denote an even convex, twice differentiable function on

(— o0, o) for which Q'(«0) = <o,
QX)) < ¢ (—o <x < o0) (L.1)
and such that Q” has increasing tendency for x > 0, i.e.,
0<Q) <A+ Q') (0<x <xy) (1.2)

Here ¢, , ¢; and in what follows ¢, ,... are positive numbers depending on the
choice of Q only. We put

wo(x) = exp{—Q(x)} (1.3)
and we denote by g, the (unique) positive solution of the equation

Note that along with {g,} the sequence {Q’'(¢,) = n/q,} is increasing so that
1 < ¢on/q, << 2. Moreover by (1.1),

' G2n (y" azn, &
2%;— = QQ—'(g]_znl)) = exp . %dx << exp coLn jx)i = (%‘«) .
Thus (9en/q.)%0t" > 2, so that
1 < ey < Gonfqn < 2. (1.5)
For a measurable g let || g || = €8S SUP_qcpcw | 2(x)]. The main result of the

present paper is
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THeorEM 1.1.  We have for every P,c Z,,,
[woPy' || < cs(mfgn) | WPyl (=0, 1..). (1.5)

Special cases of (1.5) were proved earlier by us in {3, 4, 6, 7]. Theorem 1.1
is proved in Section 3 afier we develop the necessary tools in Section 2.
Theorem 1.1 has important applications in approximation theory. In our
present paper we deal with one of these applications: the weighted polynomial
approximations of the derivative of a function by the derivatives of a sequence
of polynomials which approximate the function itself, see Section 4. A further
important application of Theorem 1.1 to converse theorems of weighted
polynomial approximation we intend to treat in a subsequent paper. It will
be shown there that (1.5) can be extended to #,-norms.!

As a last application of our result we give in Section 5 lower estimates for
the distance of consecutive zeros of certain orthogonal polynomials.

2. LEMMATA

We call w a weight function if w(x) > 0 (—0 < x < ), xX™w(x)s &
(m=0,1,...) and J'f’w wdx > 0. For an arbitrary weight function w we
denote by {p,(w; x)} the sequence of orthogonormal polynomials with
respect to w (see [2]). We observe that wy* = exp{—aQ} is a weight function
for every « > 0. In fact, we have for | x| > ¢,

00 = 0 x) = 0@) + [ @t > 0@y + [ Gl a
= Q(QT) + r]og(l X |/q7):«
ie.,
wo(x) < wolgXa./| x )" (x| > qn), @5

and this implies that x™[wy(x)]* € £ for every nonnegative integer m.
Let now w be an arbitrary weight function and let @: & — R be a linear
functional on 2. We introduce the expressions

Xws @) = min [D()]2 j 2y dx, 2.2)

where = runs through all the elements of Z,_, for which ®(s) # 0. In (2.2)
and in ail what follows, whenever lower and upper bounds of an integral are
not marked the integration must be extended over the whole real line R.

1 See note added in proof at the end of paper.
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LemMA 2.1. We have
Nw; @) = 3 (Do) 2.3)
k=0

Remark. This lemma is well known in the special case when @ is the
evaluation functional, ie., @(r) = 7(x) for some fixed xe R; see [I,
Theorem 11.3.1; 2, Theorem 1.4.1].

Proof of Lemma 2.1. We can express an arbitrary 7 € #,,_; in the form
n—1

(x) = 3 appi(w; x).

k=0

We obtain
n—1 n-1 —1 n—1
Y adlpnll <Ya z [Pl = [ 2w dx Y, {Blpu(m)]?
k=0 k=0 k=0 k=0 2.4
and the sign of equality is valid in (2.4) for @, = D[ p,(W)](k =0, 1,...,n — 1).
Q.E.D.

Lemma 2.2. Let wy, and w, be two weight functions for which
wi(x) < wy(x) (—ow < x < ). 2.5
Then we have for every linear functional @
a5 ) < Ay 5 D). (2:6)

This is clearly a consequence of the definition (2.2).

LEMMA 2.3. Let wou(x) = wo(X)for | x | < q, and won(x) = 0 otherwise,
thus wo¥(x) = wha(x); then we have for n = ¢y and .| x| = gy, ,

S s OF < T [l i 0F < 6™l 5 P0G, @)

Proof. The first half of (2.7) is a consequence of Lemma 2.2. The second
half was proved in [9] as Lemma 2.4.

LEMMA 2.4. There exist numbers ¢, and cg so that for every n > ¢, and
every &€l—ceqn, Cedn) there exists a polynomial of degree n, r,(x) ==
ro(Wa , £; x) for which we have

rax) < 2wo(x) (x| < csqn), .83
ru(€) = wol(6), (2.9
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and
/(&) = wq'(§). 2.1

Remark. Under more restrictive conditions with respect to Q this Lemma
was proved in [9] as Lemma 3.2.

Proof. For | x| < g, we have by (1.1) and (1.2) using the fact that Q"

iseven, Q"(x) < (1 + ¢1) Q"(g.) < (1 + 1) ¢(Q'(g2)/9.) = (1 + 1) coln/9,%);
the last step we obtained from (1.4). We infer thatfor | x| < g,and | | < g,

Q0 < Q) + (x — & Q'(6) + 31 + ¢p) coln/g, D (x — gy & Q(&) Pl
Q.11

We observe that | ¢ | < g, implies | @'(8)] < O'(¢.) = n/q, . Thus we can
choose 1 > ¢; > 0 so small that we have

[Px) <107 (x| < cogn, | €] < o) (212)
Let v = [n/2] and

s, (1) = i (u/r}), (2.13)

thus for n > ¢, (i.e., for large v)
L <eus(u) <2 {u] < v/10). (.14
By (2.11), (2.12), and (2.14)

o) 0O [T x)] <2000 (x| < e, | ] < o).
(2.15)
Since V(&) = Oand ¥./'(&) = O'(§) we see that r,(x) satisfies (2.9) and (2.10).
Moreover, (2.8) is implied by (2.15) and (1.3). Finally, as a consequence of
(2.13) and v = [n/2] we have r, e &, . Q.E.D.

We consider now the sequence of orthonormal polynomials { p,.(wo?; x)}
with respect to the weight wo

LEMMA 2.5. We have, provided that Q satisfies the conditions stated in
the introduction, for every real ¢ and every natural n

def ™

Ku(wg; &) = Z [pu(we’s DF < con/q.) wo'(£). (2.16)

Remark. Equation (2.16) was proved in our lecture [9] under the
additional condition Q"(2t) > (1 + ¢1) O"(¢) (¢ > ¢15) and for the weights
(1 -+ x?)2 =" (8 < 0) in our paper [5].
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Proof. First let us assume that | £ | < 3csq, . We have by Lemma 2.1
as applied to the functional ¢(P) = P(§)

[Kalwo® O = jmin [P | Phwg? dx

« Csn
> jmin [POI [ Pwgrdx

—Cgln

> min PO [ (Pry?dx

—Cslyp

= 1, min ()OI [ (Prof drlrg®F. 217)

—Cglp

In the last two steps we used (2.8) and (2.9). Since ¢ = Pr,, € &,,,_, we obtain
from (2.18) and the transformation x = cgg,f

[Knr% O > min [p(6)) f 9 dxlwo(§)

QE.@ —Cglp

— cga min [p(¢leal* | o dsbn(@F
> altvo®F (€l <degd. Q1Y)

For the last step see, e.g., 2, Theorem 3.3, Chap. I1I]. This proves (2.16)
for | ¢] < icyg, and we know from Lemma 2.3 that it holds also for
| €| = e’q,, , thus it holds by (1.5) for | €| = ¢9,. We fill the gap
g, < | €| < cpgy as follows: In virtue of (1.5) we can find a sufficiently
great natural number r so that we will have ¢,,/¢, > 2¢yy/cs so that | £ | <
¢11g, implies | £ | < 4cgg., and consequently, by (2.18) as applied to rx in
place of n

K w5 ) < K, (woh &) < (g, )Iw (O] < regdn/g,)w (617

Consequently, (2.16) is valid for every real £. Q.E.D.

Let us consider now the polynomials p(we, ; x) and p,'(Wo, ; x) (see
Lemma 2.3).

We denote the coefficient of x* in py(wo,). bY vi(Wos). Let the zeros of
Pr(wh,) be in decreasing order x,;, (v = 1, 2,..., k) and the zeros of p,'(w,)
in decreasing order we denote by &, (n=1,2,..., k — 1). It is well known that
all zeros x,;, are real and simple and they all are situated in the interval
of support (—¢, , g.). By Rolle’s theorem

Xutr,n << guk < Xy - (219)
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Since the weight wy,, is even, p,(w,,) is even for even k and odd for odd &.
Let k be odd and | x | > 2¢q,, , then by (2.19)

P2, X)) = ky(wi) T (2 —

Sur>0

= kyk(wi)n) H (x* — xi+1,k>

Oy, 4 1,6<%1p

=k ?—ixi p (W, s x) < k Lqu—fpk(wan 3 %)
< (k/g,) p, (W%, ; %)
and by a similar argument the inequality
(W, s x) < (klq,) p,(v%, ;%)  (x >2q) {2.20)

is valid also for even values k; thus it holds for every natural k.

LemMa 2.6,  We have for sufficiently great ¢,

n—1 n—1
Z {PICI(WQZQ H < Z Pr (WQn 5 f)] Ci3W 2(5) (1 €1 > c1a0).
=0 k=0 (2_2})
Proof. The first half of (2.21) we obtain by applying Lemma 2.2 with the
functional ¢,(f) = f'(€). The second half of (2.21) is a consequence of (2.20)
and (2.7). QED.
Lemma 2.7. If O satisfies the conditions stated in the introduction we have
for every real ¢ and every natural n
of n—1 .
K/wg5 & =Y [p/weh OF < culnla fDwo@1. (222)

k=0

Proof. By Lemmas 2.1 and 2.4
(K (wg% O = jmin [PUOT [ Prug? d

Cgly

= mm [P ]2 P *dx

>} ,min [P j (Pr,)? dx. (2.23)

—C3n

We set P(x) r,(x) = wo(&) ¥(x). Clearly ¥ e Z,,_, and by (2.10) and (2.9)
we have P'(§) = ¥'(&) + Q'(&) Y(§).
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The last “min” expression in (2.23) is decreased if we allow for the
concurrence every polynomial of degree not exceeding 2n — 1 and not just

polynomials divisible by r,, ; thus

wo@I K, (wo? O = ¢ jmin [¥'() + Q') ¥ (O]

on—1

| " eOP dx. (2.24)

—Ogln

Combining it with (2.2) we see that the last minimum expression is of the
form A (w, ; ¢:) where w,(x) =1 for | x| < cgq, , Wa(x) = 0 otherwise,
and ¢.(f) = f'(€) + Q'(£)f(¢). By Lemma 2.1 we infer from (2.24)

(K, Gvs 17 = v : 90
~ 113 o0+ 0@t 0] @29

An elementary calculation shows that

Wy 3 X) = (csqln)l/z ( 2k ;L 1 )1/2 Pk( c:;n )

where Py is the kth degree Legendre polynomial. Standard estimates on Py,
and P, (e.g., [1, Theorem 7.3.3 resp. Theorem 7.32.4]) show that for
| €| < $esg, we have | pu(w, 5 £ < cugy® and | pi'(wy, 5 6] < euong;,>.

Moreover, | £ | < ¥¢sq, < g, implies | Q'(€)| < n/qy, ; thus
| o8 Wa 5 8 + QO pewn s O < g™ (€] < den). (226)

Equations (2.25) and (2.26) together prove that (2.22) holds under the
assumption | ¢ | << ¥cgq, - As a consequence of Lemma 2.6, (2.22) is also
validif | € | > ¢y59, . The gap corresponding to the values $cgq, < & < 159,
can be filled in by the same argument as that in the last part of the proof of
Lemma 2.5, i.e., replacing n by rn and taking r sufficiently large but
fixed. Q.E.D.

In concluding this section we mention that by virtue of Lemma 2.7 of
our lecture note [9], the leading coefficients y,(wo) of p(wg) satisfy

')’v—l(Wo)/Vv(Wo) < €179y < 2cl7qv (V = la 29) (227)
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3. PROOF OF THE MARKOV-BERNSTEIN-TYPE INEQUALITY

Let f'be a measurable function for which w, | f'| is essentially bounded, i.c.,
I wofll < oo. Thus we can expand fin the series

x

fG) ~ Y alwo® ) p(wo®s x) ERY

v=0

with
awes f) = [ fOpFDwEDd 0 =01.). (32
We denote the sum of the first m terms of (3.1) by s,.(wo?; f; x). We have
suwe?s £ %) = [ Kow? x, ) f(£) w(e) di, (3.3)

where in consequence of the Christoffel-Darboux formula (see e.g., [1] or [2])

m—1

Kn(wok x, 1) = ) pwe® X) pwo t)

v=0

— 'Vm~1(WQz) . pm(wQZ; x) pm—l(sz; t) - p‘rn-l(sz; x) pm(W029 t)
2 — .
'ym(wQ ) X f (34}

By differentiation we obtain

Sl (g5 £ %) = [ KEV0w % x, £) f(6) wok(e) di (35
with

KO0 x, 1)

m~1

= 2. P/ wo% %) p(wo* 1)

y=0

_ Yma(wg?) [pm’(sz; %) Prua(W 0?5 1) — Pins(W o™ %) Pu(Wo? 1)
Yul(Wo?) x—1

P(Wo? X) Pra(Wo?; 1) — Pruea(Wo?; X) P(Wo®; 1)
_ 0 o e 0 g } (3.6)

ToEOREM 3.1. We have as a consequence of (2.16), (2.22), and (2.27)

(1/n) i | 8/ (W S ) wo(X) < €agnfgn) [ wof . GB.7)
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Proof: Let In = [x - (qn/n)a x -+ (qn/”)]a Jn = ("" 0, OO)"In 3

o0 S e el GO o

ie., f = fi + f, , and consequently
S W™ I X) = 5/ (W0 1 3 X) + 8 WP 12 5 %) (3.9

The estimate of the first term is simple: Taking m < » and Lemma 2.7 in
consideration,

w+{g,/n)

'O fu3 0 = | f© Ko wo® x, 1) wo'(t) di

x—la,/n

<Uwofll- {2aulm) | KSDg’s x, 0F wiwy de]

172
lwofll

Agul) S Lp,/(wet; P

v=0

< Cuo(nfqn) | wof |l [wo()] ™. (3.10)

In order to estimate the contribution of the s,,(Wo?; fz ; X) we introduce the
auxiliary functions

R T (3.11)

By Bessel’s inequality the coefficients of the orthogonal expansion (3.1) of
&, resp. 9, satisfy, in consequence of (3.8) and (3.11),

Fs

lanc?s ZDF < [ Ftwerde < Hwo 1P [ - s = 22 U wor I

0

(3.12)
resp.
> lanlet TP < Owof I | =3 (5) Wworit. (313

Following an idea of T. Carleman (see [2]), we have by (3.5) and (3.6)

'ym—l(w Qz)

! 2. 2. g
V(W o?) {00’ W% X) (W5 F,)

Sm'(Woks fo 3 X) =

— Pu1(Wo® X) an(wo?; ) — PulWo®s X) dma(W o Fr)
+ Pma(Wo?s X) an(wo?; Fu)}- (3.14)
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Consequently by (2.27),
I & e
;t Z | S (WQ :jz ) x)l
1

< 26 205 {1 p/09g% )] | G F,)
me=1
e %P;n—l(sz; .X)I 1 am(WQz; =?:/z)‘l + !prm(sz; X)‘ [ llm—1(“’02§ gn}i
+ [pm—l(sz; X)| ‘ am(WQz; g’ﬂ)‘x}

n o

< ten % (S tpwnaton) [ et Zor)

0 0

+ (é [Pulwo?; x)lz)l/z(i [an (w0 g”’)F)mg'

0 /

Inserting in the last expression the estimates (2.22) and (3.12), resp. (2.16)
and (3.13), we obtain

1 ¢ ’ : 1 | s}
22 w0 fo5 91 < oo lwef | T g (3.15)
1 7
We see from (3.9), (3.10), and (3.15) that (3.7) holds true. Q.E.D.

THEOREM 3.2. Under the conditions of Theorem 3.1 we have for every
P,e#,

| woPy' Il < 4C5(n/q) [| WoPr |- (3.16)

Remark. We bave proved in Lemma 2.5, Lemma 2.7 resp. concerning
(2.27) in [9] that our assumptions (2.16), {2.22), and (2.27) are satisfied
provided that Q is convex twice differentiabie Q'(c0) = o0 and it satisfies {1.1)
and (1.2). It follows that Theorem 1.1 is implied by Theorem 3.2. In turn our
assumptions do hold also for weights which are more general.

Proof of Theorem 3.2. In consequence of the evident relation
Su(wo? Py s x) = Pux) im = n+ 1,n -+ 2,...), valid for every m > n and
every P, e &, , the shifted de la Vallée Poussin means

vuwi f3) = (Un) Y 80w Pr: %) (3.17)
satisfy

Ua(Wo?; Py 5 X) = Py(x) (Pne?,) (3.18a)
and

Uni(woz; P, x) = Pn’(x) (—Pn € gn)- (318‘}3)

640/19/1-3
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Thus by (3.18b), (3.17), and Theorem 3.1 for every P, %,

o) | PO = (A1) 3 5u/00% P ) | wa)

n+1
2n

< 2(1/211) z [ sml(WQ2; Pn 5 X)l WQ(-X)

< 2¢15(2n/q50) || wolPy || << deig(nfq,) | woPy |l

Thus || woPy'[| < 418(n/qa) || woPul. QE.D.

In concluding this section let us observe that (3.16) and (2.16) together
imply (2.22), which in turn was used to prove (3.16). Indeed it follows from
(2.16) by Schwartz’s inequality that the expression

n—1
K(wo® x3) = 3, pwo?; x) p(wo?s ¥),
0
which is a polynomial of degree n in x for y fixed and vice versa, satisfies
| Kn(wa® X, ¥)l wo(x) Wo(¥) < Co(n/gn). (3.19)

We apply to (3.19) r-times the inequality (3.16) with respect to the variable
x and r-times with respect to the variable y and infer that the expressions

n—1
K{m(w o2 x, ) = g P2 x) pP(w % ») (3.20)
satisfy the inequalities
| K% x, ) wox) wo(y) < CodCu)* (nfgn™. (3.21)
By setting x = y we get
n—1
X [p0wg’s 01 < o™ (g™ T o™ (3.22)

Clearly, (2.16) is the special case r = 1 of (3.22). Note that we proved the
validity of (3.22) under the conditions (2.16), (2.22), and (2.27) which are
satisfied under our assumptions concerning Q formulated in the Introduction.

4, ON SIMULTANEOUS APPROXIMATION

We start this section by compiling some earlier results which we are going
to apply.
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Lemma 4.1, The partial sums s,(wo% f; x) of the orthogonal expansion
(3.1) satisfy

() S sulwats £ 0l wold) < enllwofll  (—o0 <x < ). (41)

m=1

Proof. This is a consequence of (2.16) and {2.27) and is proved along the
lines of the proof of Theorem 3.1; see [9, Theorem 4.1].

By virtue of Lemma 4.1 the shifted de la Vallée Poussin means (3.17) has
the property that

[ oawo® ) wol < 2(1/2n) 3 | su(wo® /3 x) wold) < Zeyyllwof (. (42)

Let

&xwo i) = nf I(f = P)woll. (4.3)
and P,, € Z be such that
I(f = Powo | < 2Zen(wg 5 f). 44
By (3.18a) we obtain from (4.2) and (4.3)
I — vwo® Nwoll < I — Paywo | + 1| va(wo? f — Pu)woll (4.5

< (1 + 2e) I/ — Poywe Il < 201 + 2¢41) €wo 5 /).

In the rest of this section we assume that

Q'2x)/Q'(x) > 1+ ¢ (x> Cy) (4.6)
Let us observe that (4.6) does hold under the condition that
Q" CNN(Q'(x) > o (x > Cap). (4.7

LemMmA 4.2. If Q satisfies (4.6) besides all the conditions stated in the
Introduction then

Mlwo% &) K w02 O < ol W& (€] < cag).  (48)

This was proved in [10].
For an fsatisfying wo f€ & we set

eDwy s f) d__'ifpiglgg f | f— Plwgdt. (4.9)

Lemma 4.3. Let f be of bounded variation in every finite interval then we
have under the same conditions as in Lemma 4.2

D000 5 1) < caoa@nin) [ wolt) | df (9. (4.10)
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This is obtained by combining results of our paper [8, Theorems 2.2 and 3.1]
with Lemma 4.2.

By 4, we denote the set of functions g which satisfy || wo gl < o and
which are orthogonal to £, with respect to the weight wgy?, i.e.,

f gPwrdt =0 (P eP,). (4.11)
LemMMA 4.4, We have
| wot) [“ g0y dt| < Culgaid lgwol (g4 @1)

Proof. (See [9, Lemma 5.4].) Letting
¢ (1) = wi(t)  (te[0, x]),
=0 (€10, xD),

we have for arbitrary P, e &,

‘ fo g(r) dt ] = ! f: g(t) b1) wk(r) dt ‘

= | 5180 P w0 dt |

<llgwyllePw,; ¢,), 4.13)

and by virtue of Lemma 4.3
€W s $a) < Casldnln) WH'(). (4.14)
Q.E.D.

LeMMA 4.5. Let F be absolutely continuous and || F'wq || << oo. Then the
polynomial

Vawe®s Fx) = FO) + [ viwes Fi ) die 2, (4.15)
0
satisfies

| WolF — Vawo® P < Con(@uln) €x(wo 5 F).- (4.16)

Proof. 1In consequence of (3.17), #' — v, (wo?; ') € 4, . Consequently,
by virtue of Lemma 4.4,
1wol# — Valwe?s ZI = | wole) [ 1) — valwots 7 01t |
< Car{gn/M) | wolF " — valwo?; F)]|
< Cop(qn/n) €n(Wo 5 F). Q.E.D.
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Lemma 4.6, We have
e(Wo ; F) < Caolgnfn) €nca(wo s F). 4.17)

Proof. We proved this lemma under additional restrictions on ¢ in [9]
(as Lemma 6.1). The proof is the same: Lemma 4.5 implies

en(Wo 3 F) < ealgn/n) || wF" | (4.18)

and we replace in (4.18) &’ by %' — P,_,, where P,_, €%, _, satisfies
L wol#F — Pyl < 2eq 4(wo 5 #).

TueoreM 4.1, We assume that Q satisfies the conditions of the Introduction
and also satisfies (4.2); let F be continuously differentiable and let P, %,
such that

I Wwo(F — Pl <9, (4.19)
Then
T wolF' — Py) < cosm/qn)nn + eagena(wo ; F). (4.20)
Remark. f 5, < ae(wq ; F) we have by (4.20) and (4.17)

[ wolF' — P.Y| < acss(n/q,) €x(Wo 5 F) + Cogenin(wo s )
< (@C2sCo6 + Cog) €qy(Wo 3 F); 4.21)

i.e., the derived sequence of a sequence which is good approximating to %
with the weight w,, is again a good approximating sequence to #  with the
same weight.

Proof of Theorem 4.1. In consequence of (4.16) and (4.19)
[ wolVa(wo?; F) — Pull < 1 + €29(gn/n) ex(wo 5 F7; (4.22)
thus by virtue of Theorem 3.2
[ wolV/'(wo® F) — P/ = || wolva(wo® ) — P,']|
< 4e15(n/qn) [0 + Co9(Gn/n) xlwo 5 F )1 {4.23)
Finally, by (4.5)

[wol#" — P < wolF' — va(wo ;s FOl + [l woloalwo®; F7) — P,1

<
< regg(r/qa)nn + [deagay + 2(1 4 2¢51)] ex(wo 3 F).
(4.24)

Q.E.D.
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5. ON THE ZERGCS OF ORTHOGONAL POLYNOMIALS

THEOREM 5.1. By a proper choice of the positive numbers csg, €1, Cao
every pair of consecutive zeros X,, and X,y ., of p.(wo?; x) which are situated
in [—cg0qn » C309n] satisfies

c3l(qn/n) < Xpp — Xri1,n < c32(qn/n)' (51)

Proof. The second part of the inequality (5.1) was proved in [10]. We
can assume without loss of generality that Cy, << 1. The proof of the first part
runs as follows: By the Christoffel-Darboux formula we have, taking in
consideration that p,(wy?; x,,) = 0:

n(wQ Xrn 5 JC) Z pv(WQ H x'rn) pv(wQ ] .X')

v=0
— '}’;n(lv(v“;%) Pn—l(WQ;JZn)xf:(WQ ; x) (5.2)
We infer from (5.2) that
K (wo?; Xon » Xps1.0) = 0. (5.3)
By [10, Theorem 3.1] we have
Kn(W0%s Xon » Xpn) = Cag(/qn) W (Xrm)- (54

In turn, by Lemmas 2.5 and 2.7 we have for every x € (—o0, o)

(d/dx){ K n(w 0% Xpn » XD} =

(WQZ; xrn) pv’(sz; x) l

%Z [pV(WQ > xrn) Z [Pu (WQ » xrn)] %

< 34(71/qn) WQ(xrn) WQ(X)]ﬁ . (55)

Now let x € [X,,1 , Xrpn]; thus by the already established right-hand side of
inequality (5.1) 0 << x,,, — x << Cgy(g,/n). Hence

| (%) — QX)) < Cao(gn/n) - Q' (c3090) < C32(gn/n) Q'(qn) = €32

so that
[WQ(x)] -t 635[W0(x'rn)] -t (X € [xr+1,n > xrn])' (56)

From (5.5) and (5.6)

!(d/dx){Kn(WO s Xrn s X)}| 034(”/%)2[Wo(xm)] -2 (x € [xr+1,n H xrn])(- 7)
5.
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By (5.3), (5.4), and (5.7) we have

cs3(”/€n)[WQ(xrn)]_2 < Kn(WQ2; Xrn s xrn) - Kn("’VQz; Xrn s xr+1.n)

7 a5 0

Lrii,n

< 634(’7/‘111)2[”’Q(xfn)]_z(xrn - x7'+1,ﬂ)7

Le., X — Xpqa,m = Caa(C3)™Hg /). Q.ED.

Note Added in Proof. We extended inequality (1.5) to %,-norms and applied it to the

weighted polynomial approximation in “Approximation Theory II” (G. G. Lorentz,

C.

10.

K. Chui, and L. L. Shumaker, Eds.), pp. 369-377, Academic Press, 1976.

REFERENCES

. G. 8z£G0, “Orthogonal Polynomials,” Amer. Math. Soc. Coll. Publ., Vol. 23, 2nd ed.,
Amer. Math. Soc., New York, 1959.

. G. FreuUD, “Orthogonale Polynome,” Birkhduser (Basel), 1969. English translation
by 1. Foldes, Pergamon Press, London/Toronto/New York, 1971.

. G. Freup, On two polynomial inequalities, I, Acta Math. Acad. Sci. Hungar. 22 (1971),
109-117.

. G. Freub, On two polynomial inequalities, I, Acta Math. Acad. Sci. Hungar. 23
(1972), 137-145.

. G. FreUD, A contribution to the problem of weighted polynomial approximation, i«
“Linear Operators and Approximations” (P. L. Butzer, J.-P. Kahane, and B. Sz.-
Nagy, Eds.), pp. 431-447, Birkhiduser, Basel, 1972.

. G. Freup, On direct and converse theorems in weighted polynomial approximation,
Marh. Z. 126 (1972), 123-134.

. G. Freub, On converse theorems of weighted polynomial approximation, Acta Math.
Acad. Sci. Hungar. 24 (1973), 389-397.

. G. Freup, Extension of the Dirichlet-Jordan convergence criterion to a general class
of orthogonal polynomial expansions, Acta Math. Acad. Sci. Hungar. 25 (1974),
109-122.

. G. Freup, On polynomial approximation with respect to general weights, in Lecture

Notes, Vol. 399 (H. G. Garnir, K. R. Unni, and J. H. Williamson, Eds.), pp. 149-179,

Springer, Berlin, 1974,

G. Freup, On the theory of one sided weighted polynomial approximation, in

“Approximation Theory and Functional Analysis” (P. L. Butzer, J.-P. Kahane, and

B. Sz.-Nagy, Eds.), pp. 285-303, Birhiuser (Basel), 1974.



